Lesson 16. Linear Programs in Canonical Form

0 Warm up

Example 1.

Let $A=\left(\begin{array}{lll}1 & 9 & 8 \\ 5 & 2 & 3\end{array}\right)$ and $\mathbf{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)_{3 \times 1} . \quad$ Then $A \mathbf{x}=\binom{x_{1}+9 x_{2}+8 x_{3}}{5 x_{1}+2 x_{2}+3 x_{3}}$

1 Canonical form

- LP in canonical form with decision variables x_{1}, \ldots, x_{n} :

$$
\begin{array}{rll}
\text { minimize / maximize } & \sum_{j=1}^{n} c_{j} x_{j} & \text { all general } \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} & \text { for } i \in\{1, \ldots, m\}^{\text {equaints are }} \begin{array}{c}
\text { equatities }
\end{array} \\
& x_{j} \geq 0 & \text { for } j \in\{1, \ldots, n\} \longleftarrow \text { all variables are nonnegative }
\end{array}
$$

- In vector-matrix notation with decision variable vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{align*}
\text { minimize } / \text { maximize } & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & A \mathbf{x}=\mathbf{b} \tag{CF}\\
& \mathbf{x} \geq \mathbf{0}
\end{align*}
$$

- A has m rows and n columns, \mathbf{b} has m components, and \mathbf{c} and \mathbf{x} each have n components
- We typically assume that $m \leq n$, and $\operatorname{rank}(A)=m$

Example 2. Identify $\mathbf{x}, \mathbf{c}, A$, and \mathbf{b} in the following canonical form LP:

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x+4 y-z \\
\text { subject to } & 2 x-3 y+z=10 \\
& 7 x+2 y-8 z=5 \\
& x \geq 0, y \geq 0, z \geq 0
\end{array}
$$

$$
\vec{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \vec{c}=\left(\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right) \quad A=\left(\begin{array}{ccc}
2 & -3 & 1 \\
7 & 2 & -8
\end{array}\right) \quad \vec{b}=\binom{10}{5}
$$

- A canonical form LP always has at least 1 extreme point (if it has a feasible solution)
- Intuition: if solutions in the feasible region must satisfy $\mathbf{x} \geq \mathbf{0}$, then the feasible region must be "pointed"

2 Converting any LP to an equivalent canonical form LP

- Inequalities \rightarrow equalities
- Slack and surplus variables "consume the difference" between the LHS and RHS
- If constraint i is a \leq-constraint, add a slack variable s_{i} :

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \Rightarrow \quad \sum_{j=1}^{n} a_{i j} x_{j}+s_{i}=b_{i} \quad s_{i} \geqslant 0
$$

- If constraint i is a \geq-constraint, subtract a surplus variable s_{i} :

$$
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \quad \Rightarrow \quad \sum_{j=1}^{n} a_{i j} x_{j}-s_{i}=b_{i} \quad s_{i} \geqslant 0
$$

- Nonpositive variables \rightarrow nonnegative variables
- If $x_{j} \leq 0$, then introduce a new variable x_{j}^{\prime} and substitute $x_{j}=-x_{j}^{\prime}$ everywhere - in particular:

$$
x_{j} \leq 0 \quad \Rightarrow-x_{j}^{\prime} \leq 0 \quad \Rightarrow \quad x_{j}^{\prime} \geq 0
$$

- Unrestricted ("free") variables \rightarrow nonnegative variables

$$
\begin{aligned}
5 & =5-0 \\
-4 & =0-4=1-5
\end{aligned}
$$

- If x_{j} is unrestricted in sign, introduce 2 new nonnegative variables x_{j}^{+}, x_{j}^{-}
- Substitute $x_{j}=x_{j}^{+}-x_{j}^{-}$everywhere
- Why does this work?
\diamond Any real number can be expressed as the difference of two nonnegative numbers

Example 3. Convert the following LP to canonical form.
(a) maximize $3 x+8 y$
subject to $x+4 y \leq 20$
$x+y \geq 9$
$x \geq 0, y$ free
$>y=y^{+}-y^{-}$
(b) minimize $5 x_{1}-2 x_{2}+9 x_{3}$
subject to $3 x_{1}+x_{2}+4 x_{3}=8$
$2 x_{1}+7 x_{2}-6 x_{3} \leq 4$
$x_{1} \leq 0, x_{2} \geq 0, x_{3} \geq 0$
\downarrow
$x_{1}=-x_{1}^{\prime}$
(a) $\max 3 x+8 y^{+}-8 y^{-}$
s.t. $x+4 y^{+}-4 y^{-}+5_{1}=20$
$x+y^{+}-y^{-} \quad-S_{2}=9$
$x \geqslant 0, y^{+} \geqslant 0, y^{-} \geqslant 0, s_{1} \geqslant 0, s_{2} \geqslant 0$
(b) min $-5 x_{1}^{\prime}-2 x_{2}+9 x_{3}$
st. $-3 x_{1}^{\prime}+x_{2}+4 x_{3}=8$
$-2 x_{1}^{\prime}+7 x_{2}-6 x_{3}+s_{1}=4$
$x_{1}^{\prime} \geq 0, x_{2} \geq 0, x_{3} \geqslant 0, s_{1} \geqslant 0$

3 Basic solutions in canonical form LPs

- Recall: a solution \mathbf{x} of an LP with n decision variables is a basic solution if
(a) it satisfies all equality constraints
(b) at least n constraints are active at \mathbf{x} and are linearly independent
- The solution \mathbf{x} is a basic feasible solution (BFS) if it is a basic solution and satisfies all constraints of the LP
- What do basic solutions in canonical form LPs look like?

3.1 Example

- Consider the following canonical form LP:

$$
\begin{align*}
& \text { maximize } 3 x+8 y \\
& \text { subject to } x+4 y+s_{1} \quad=20 \tag{1}\\
& x+y+s_{2}=9 \tag{2}\\
& 2 x+3 y \quad+s_{3}=20 \tag{3}\\
& x \quad \geq 0 \tag{4}\\
& y \quad \geq 0 \tag{5}\\
& s_{1} \quad \geq 0 \tag{6}\\
& s_{2} \quad \geq 0 \tag{7}\\
& s_{3} \geq 0 \tag{8}
\end{align*}
$$

- Identify the matrix A and the vectors \mathbf{c}, \mathbf{x}, and \mathbf{b} in the above canonical form LP.

$$
\vec{x}=\left(\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right) \quad \vec{c}=\left(\begin{array}{l}
3 \\
8 \\
0 \\
0 \\
0
\end{array}\right) \quad \vec{a}=\left(\begin{array}{lllll}
1 & 4 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
2 & 3 & 0 & 0 & 1
\end{array}\right) \quad \vec{b}=\left(\begin{array}{c}
20 \\
9 \\
20
\end{array}\right)
$$

- Suppose \mathbf{x} is a basic solution

- How many linearly independent constraints must be active at \mathbf{x} ?
- How many of these must be equality constraints?
- How many of these must be nonnegativity bounds?

- Let's compute the basic solution $\mathbf{x}=\left(x, y, s_{1}, s_{2}, s_{3}\right)$ associated with (1), (2), (3), (6), and (8)
- It turns out that the constraints (1), (2), (3), (6), and (8) are linearly independent
- Since the basic solution is active at the nonnegativity bounds (6) and (8),

$$
S_{1} \text { and } S_{3} \text { are "forced" to be } 0
$$

- The other variables, x, y, and s_{2} are potentially nonzero
- Substituting $s_{1}=0$ and $s_{3}=0$ into the other constraints (1), (2), and (3), we get

$$
\begin{align*}
x+4 y+(0) & =20 \\
x+y+s_{2} & =9 \tag{*}\\
2 x+3 y+(0) & =20
\end{align*}
$$

- Let $\mathbf{x}_{B}=\left(x, y, s_{2}\right)$ and B be the submatrix of A consisting of columns corresponding to x, y, and s_{2} :

$$
B=\left(\begin{array}{lll}
1 & 4 & 0 \\
1 & 1 & 1 \\
2 & 3 & 0
\end{array}\right)
$$

- Note that ($*$) can be written as

$$
\begin{equation*}
B \mathbf{x}_{B}=\mathbf{b} \tag{**}
\end{equation*}
$$

- The columns of B linearly independent. Why?

$$
\operatorname{det}(B)=\operatorname{det}\left(\begin{array}{lll}
1 & 4 & 0 \\
1 & 1 & 1 \\
2 & 3 & 0
\end{array}\right)=5 \neq 0 \Rightarrow \text { The columns of } B \text { are } L I
$$

- ($* *$) has a unique solution. Why?

The columns of B are $L I \Rightarrow B$ is invertible

$$
\Rightarrow(* *) \text { has a unique solution: } \vec{x}_{B}=B^{-1} \vec{b}
$$

- It turns out that the solution to $(* *)$ is $\mathbf{x}_{B}=(4,4,1)$
- Put it together: the basic solution $\mathbf{x}=\left(x, y, s_{1}, s_{2}, s_{3}\right)$ associated with (1), (2), (3), (6), and (8) is

$$
\left.\begin{array}{l}
S_{1}=0, \quad S_{3}=0 \\
\vec{x}_{B}=\left(x, y, S_{2}\right)=(4,4,1)
\end{array}\right\} \Rightarrow \vec{x}=(4,4,0,1,0)
$$

4 Generalizing the example

- Now let's generalize what happened in the example above
- Consider the generic canonical form LP (CF)
- Let $n=$ number of decision variables
- Let $m=$ number of equality constraints
- In other words, A has m rows and n columns
- Assume $m \leq n$ and $\operatorname{rank}(A)=m$
- Suppose \mathbf{x} is a basic solution
- How many linearly independent constraints must be active at \mathbf{x} ?
n
- Since \mathbf{x} satisfies $A \mathbf{x}=\mathbf{b}$, how many nonnegativity bounds must be active?
$n-m$
- Generalizing our observations from the example, we have the following theorem:

Theorem 1. If \mathbf{x} is a basic solution of a canonical form LP, then there exists m basic variables of \mathbf{x} such that
(a) the columns of A corresponding to these m variables are linearly independent;
(b) the other $n-m$ nonbasic variables are equal to 0 .

The set of basic variables is referred to as the basis of \mathbf{x}.

- Let's check our understanding of this theorem with the example

- Recall that $\mathbf{x}=\left(x, y, s_{1}, s_{2}, s_{3}\right)=(4,4,0,1,0)$ is a basic solution
- Which variables of \mathbf{x} correspond to m LI columns of A ?

$$
x, y, s_{2}
$$

- Which $n-m$ variables of \mathbf{x} are equal to 0 ?

$$
S_{1}, S_{3}
$$

- The basic variables of \mathbf{x} are $\quad x_{1}, y, s_{2}$
- The nonbasic variables of \mathbf{x} are $\quad S_{1}, S_{3}$
- The basis of \mathbf{x} is $\quad B=\left\{x, y_{1} s_{2}\right\}$
- Let B be the submatrix of A consisting of columns corresponding to the m basic variables
- Let \mathbf{x}_{B} be the vector of these m basic variables
- Since the columns of B are linearly independent, the system $B \mathbf{x}_{B}=\mathbf{b}$ has a unique solution
- This matches what we saw in $(* *)$ in the above example
- The m basic variables are potentially nonzero, while the other $n-m$ nonbasic variables are forced to be zero

