•

Lesson 16. Linear Programs in Canonical Form

0 Warm up

Example 1.

Let
$$A = \begin{pmatrix} 1 & 9 & 8 \\ 5 & 2 & 3 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Then $A\mathbf{x} = \begin{pmatrix} x_1 + 9x_2 + 8x_3 \\ 5x_1 + 2x_2 + 3x_3 \end{pmatrix}$

1 Canonical form

• LP in **canonical form** with decision variables x_1, \ldots, x_n :

minimize / maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i$ for $i \in \{1, \dots, m\}$
 $x_j \ge 0$ for $j \in \{1, \dots, n\}$ all variables
are nonnegative

• In vector-matrix notation with decision variable vector $\mathbf{x} = (x_1, \dots, x_n)$:

minimize / maximize
$$\mathbf{c}^{\mathsf{T}} \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$ (CF)
 $\mathbf{x} \ge \mathbf{0}$

• A has *m* rows and *n* columns, **b** has *m* components, and **c** and **x** each have *n* components

• We typically assume that $m \le n$, and rank(A) = m

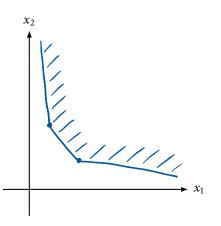
Example 2. Identify **x**, **c**, *A*, and **b** in the following canonical form LP:

maximize
$$3x + 4y - z$$

subject to $2x - 3y + z = 10$
 $7x + 2y - 8z = 5$
 $x \ge 0, y \ge 0, z \ge 0$

$$\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & -3 & 1 \\ 7 & 2 & -8 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$$

- A canonical form LP always has at least 1 extreme point (if it has a feasible solution)
 - Intuition: if solutions in the feasible region must satisfy $x \ge 0$, then the feasible region must be "pointed"



-4 = 0 - 4 = 1 - 5

2 Converting any LP to an equivalent canonical form LP

- Inequalities → equalities
 - Slack and surplus variables "consume the difference" between the LHS and RHS
 - If constraint *i* is a \leq -constraint, add a slack variable s_i :

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad \Rightarrow \qquad \sum_{j=1}^{n} a_{ij} x_j + s_i = b_i \qquad S_i \ge 0$$

• If constraint *i* is a \geq -constraint, subtract a surplus variable s_i :

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \qquad \Rightarrow \qquad \qquad \sum_{j=1}^{n} a_{ij} x_j - S_i = b_i \qquad \qquad S_i \ge D$$

- Nonpositive variables → nonnegative variables
 - If $x_j \le 0$, then introduce a new variable x'_j and substitute $x_j = -x'_j$ everywhere in particular:

$$x_j \leq 0 \Rightarrow -x_j' \leq 0 \Rightarrow x_j' \geq 0$$

- Unrestricted ("free") variables → nonnegative variables
 - If x_j is unrestricted in sign, introduce 2 new nonnegative variables x_j^+, x_j^-
 - Substitute $x_j = x_j^+ x_j^-$ everywhere
 - Why does this work?
 - ♦ Any real number can be expressed as the difference of two nonnegative numbers

Example 3. Convert the following LPs to canonical form.

(*) maximize
$$3x + 8y$$

subject to $x + 4y \le 20$
 $x + y \ge 9$
 $x \ge 0, y$ free
 $y = y^{+} - y^{-}$
(*) max $3x + 8y^{+} - 8y^{-}$
 $s.t.$ $x + 4y^{+} - 4y^{-} + s_{1} = 20$
 $x + y^{+} - y^{-} - 5_{2} = 9$
 $x \ge 0, y^{+} \ge 0, y^{-} \ge 0, S_{1} \ge 0$
(b) min $-5x_{1}' - 2x_{2} + 9x_{3}$
 $s.t. -3x_{1}' + x_{2} + 4x_{3} = 8$
 $-2x_{1}' + 4x_{2} - 6x_{3} + s_{1} = 4$
 $x_{1}' \ge 0, x_{2} \ge 0, x_{3} \ge 0$

3 Basic solutions in canonical form LPs

- Recall: a solution **x** of an LP with *n* decision variables is a **basic solution** if
 - (a) it satisfies all equality constraints
 - (b) at least n constraints are active at \mathbf{x} and are linearly independent
- The solution x is a basic feasible solution (BFS) if it is a basic solution and satisfies all constraints of the LP
- What do basic solutions in canonical form LPs look like?

3.1 Example

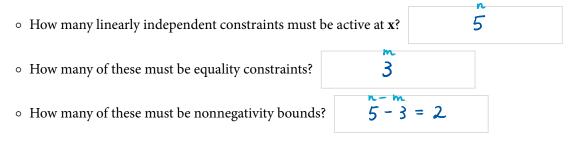
• Consider the following canonical form LP:

		maximize	3x + 8y		
		subject to	$x + 4y + s_1$	= 20	(1)
			$x + y + s_2$	= 9	(2)
			2x + 3y + 3y	$s_3 = 20$	(3)
			x	≥ 0	(4)
			у	≥ 0	(5)
Constant from LP: minimize / maximize subject to			<i>s</i> ₁	≥ 0	(6)
	$\mathbf{c}^{T}\mathbf{x}$		<i>s</i> ₂	≥ 0	(7)
				$s_3 \geq 0$	(8)
	$\mathbf{x} \ge 0$				

• Identify the matrix *A* and the vectors **c**, **x**, and **b** in the above canonical form LP.

 $\vec{x} = \begin{pmatrix} x \\ y \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} \quad \vec{c} = \begin{pmatrix} 3 \\ 8 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 4 & i & 0 & 0 \\ i & i & 0 & i & 0 \\ 2 & 3 & 0 & 0 & 1 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} 2 & 0 \\ 9 \\ 2 & 0 \end{pmatrix}$ $m = 3 \qquad n = 5$

• Suppose **x** is a basic solution



- Let's compute the basic solution $\mathbf{x} = (x, y, s_1, s_2, s_3)$ associated with (1), (2), (3), (6), and (8)
 - It turns out that the constraints (1), (2), (3), (6), and (8) are linearly independent
 - $\circ~$ Since the basic solution is active at the nonnegativity bounds (6) and (8),

S, and S3 are "forced" to be O

- The other variables, x, y, and s_2 are potentially nonzero
- Substituting $s_1 = 0$ and $s_3 = 0$ into the other constraints (1), (2), and (3), we get

$$\begin{array}{l} x + 4y + (0) &= 20 \\ x + y &+ s_2 &= 9 \\ 2x + 3y &+ (0) &= 20 \end{array}$$
 (*)

• Let $\mathbf{x}_B = (x, y, s_2)$ and *B* be the submatrix of *A* consisting of columns corresponding to *x*, *y*, and *s*₂:

$$B = \begin{pmatrix} 1 & 4 & 0 \\ 1 & 1 & 1 \\ 2 & 3 & 0 \end{pmatrix}$$

• Note that (*) can be written as

$$B\mathbf{x}_{B} = \mathbf{b} \tag{(**)}$$

• The columns of *B* linearly independent. Why?

$$det(B) = det\begin{pmatrix} 1 & 4 & 0 \\ 1 & 1 & 1 \\ 2 & 3 & 0 \end{pmatrix} = 5 \neq 0 \implies The columns of B are LI$$

• (**) has a unique solution. Why?

The columns of B are
$$LI \Rightarrow B$$
 is invertible
 \Rightarrow (**) has a unique solution: $\vec{x}_B = B^{-1}\vec{b}$

- It turns out that the solution to (**) is $\mathbf{x}_B = (4, 4, 1)$
- Put it together: the basic solution $\mathbf{x} = (x, y, s_1, s_2, s_3)$ associated with (1), (2), (3), (6), and (8) is

$$S_1 = 0, \quad S_3 = 0$$

 $\vec{x}_B = (x, y, S_2) = (4, 4, 1)$ $\Rightarrow \quad \vec{x} = (4, 4, 0, 1, 0)$

4 Generalizing the example

- Now let's generalize what happened in the example above
- Consider the generic canonical form LP (CF)
 - Let n = number of decision variables
 - Let m = number of equality constraints
 - In other words, A has m rows and n columns
 - Assume $m \le n$ and rank(A) = m
- Suppose **x** is a basic solution
 - How many linearly independent constraints must be active at **x**?
 - Since **x** satisfies A**x** = **b**, how many nonnegativity bounds must be active?
- Generalizing our observations from the example, we have the following theorem:

Theorem 1. If x is a basic solution of a canonical form LP, then there exists *m* basic variables of x such that

3

n

n-m

maximize 3x + 8y

 $x + 4y + s_1$

 $+ s_2$

*s*₁

x + y

2x + 3y

= 20 (1)

= 9

 ≥ 0 (7)

 $s_3 \ge 0$ (8)

(5)

(6)

subject to

- (a) the columns of *A* corresponding to these *m* variables are linearly independent;
- (b) the other n m nonbasic variables are equal to 0.

The set of basic variables is referred to as the **basis** of **x**.

- Let's check our understanding of this theorem with the example
 - Back in the example, n = 5 and m =
 - Recall that $\mathbf{x} = (x, y, s_1, s_2, s_3) = (4, 4, 0, 1, 0)$ is a basic solution
 - Which variables of x correspond to m LI columns of A? χ, χ, ς_z
 - Which n m variables of **x** are equal to 0? S_1 , S_3
 - The basic variables of \mathbf{x} are \mathbf{x} , \mathbf{y} , $\mathbf{S}_{\mathbf{z}}$
 - The nonbasic variables of \mathbf{x} are
 - The basis of \mathbf{x} is
- Let *B* be the submatrix of *A* consisting of columns corresponding to the *m* basic variables

 $\mathcal{B} = \{x, y, s_{2}\}$

- Let **x**_{*B*} be the vector of these *m* basic variables
- Since the columns of *B* are linearly independent, the system $B\mathbf{x}_B = \mathbf{b}$ has a unique solution
 - This matches what we saw in (**) in the above example
- The *m* basic variables are potentially nonzero, while the other n m nonbasic variables are forced to be zero

Si, Sa